partial proof of graham higman's conjecture related to coset diagrams

Authors

q. mushtaq

vice chancellor, the islamia university of bahawalpur, pakistan. a. razaq

department of mathematics, govt. post graduate college jauharabad, pakistan.

abstract

graham higman has defined coset diagrams for psl(2,ℤ). these diagrams are composed of fragments, and the fragments are further composed of two or more circuits. q. mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree, there are finite number of such polynomials. in this paper, we consider a family ϝ of fragments such that each fragment in ϝ contains one vertex fixed byf_v [(〖xy〗^(-1) )^(s_1 ) (xy)^(s_2 ) (〖xy〗^(-1) )^(s_3 ),(xy)^(q_1 ) (〖xy〗^(-1) )^(q_2 ) (xy)^(q_3 ) ]where s₁,s₂,s₃,q₁,q₂,q₃∈ℤ⁺, and prove higman's conjecture for the polynomials obtained from the fragments in ϝ.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Partial proof of Graham Higman's conjecture related to coset diagrams

Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...

full text

A Proof of the Melvin{morton Conjecture and Feynman Diagrams

The Melvin{Morton conjecture says how the Alexander{Conway knot invariant function can be read from the coloured Jones function. It has been proved by D. Bar-Natan and S. Garoufalidis. They reduced the conjecture to a statement about weight systems. The proof of the latter is the most diicult part of their paper. We give a new proof of the statement based on the Feynman diagram description of t...

full text

A Schur Non-negativity Conjecture Related to Double-wiring Diagrams

We make an explicit combinatorial construction of the cluster algebra arising from a double wiring diagram. We also state a Schur non-negativity conjecture and prove it is true for small cases.

full text

Cayley graphs and coset diagrams

Let G be a finite group, and X a subset of G. The Cayley graph of G with respect to X , written Cay(G,X) has two different definitions in the literature. The vertex set of this graph is the group G. In one definition, there is an arc from g to xg for all g ∈ G and x ∈ X ; in the other definition, for the same pairs (g,x), there is an arc from g to gx. Cayley graphs are generalised by coset grap...

full text

On the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture

The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...

full text

On a Diophantine Equation Related to a Conjecture of Erdös and Graham

A particular case of a conjecture of Erdös and Graham, which concerns the number of integer points on a family of quartic curves, is investigated. An absolute bound for the number of such integer points is obtained.

full text

My Resources

Save resource for easier access later


Journal title:
bulletin of the iranian mathematical society

جلد ۴۲، شماره ۲، صفحات ۳۵۳-۳۶۹

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023